cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
cho nửa đường tròn tâm O đường kính AB lấy C trên nửa đường tròn. lấy D thuộc AB. đường thẳng D vuông góc với AB cắt BC tại F,cắt AC tại E, tiếp tuyến C của đường tròn O cắt EF tại I . chứng minh a) so sánh góc IEC và góc ICE và góc ABC ,b)tam giác IEC là tam giác cân,c)IC=IE=IF
Cho tam giác ABC vuông tại A có đường cao AH, biết CH = 9 cm và BH = 4 cm. Gọi D là điểm đối xứng của A qua BC và E là giao điểm của hai tia CA, DB. Qua E kẻ đường thẳng vuông góc với BC cắt đường thẳng BC tại F, cắt đường thẳng AB tại G. Qua C kẻ đường thẳng song song với AG cắt đường thẳng AD tại K. a) Tính độ dài đường cao AH, cạnh AB của tam giác ABC b) Chứng minh AC bình = CH.HB+ AH.HK c) Chứng minh rằng FA là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC có 3 góc nhọn (AB <AC) nội tiếp đường tròn tâm O. Kẻ đường thẳng d là tiếp tuyến tại A của đường tròn (O). Gọi d' là đường thẳng qua B và song song với d; d' cắt các đường thẳng AO, AC lần lượt tại E, D. Kẻ AF là đường cao của tam giác ABC (F thuộc BC)
a) Chứng minh rằng tứ giác ABFE nội tiếp;
b) Chứng minh rằng AB2 = AD.AC
c) Gọi M, N lần lượt là trung điểm của AB, BC. Chứng minh rằng MN vuông góc với EF
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Đường thẳng AO cắt (O) tại điểm M khácA. Đường thẳng qua C vuông góc với AB cắt (O) tại N khác C. Gọi K là giao của MN với BC.a) Chứng minh tam giác KCN cânb) Chứng minh OK vuông góc với BMc) Khi tam giác ABC cân tại A, 2 tiếp tuyến của (O) tại M và N cắt nhau tại P. Chứng minh P, B, Othẳng hàng
cho (O, R), lấy điểm O cách A một khoảng bằng 2R. Kẻ các tiếp tuyến AB và AC với đường tròn (B, C là các tiếp điểm). Đoạn thẳng OA cắt đường tròn (O) tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K
a, Chứng minh: Tam giác OKA cân tại K
b, Đường thẳng KI cắt AB tại M. Chứng minh: KM là tiếp tuyến của đường tròn (O)
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC