Lời giải:
1.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
$AH=2S_{ABC}: BC = \frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm)
2. Đề sai. Bạn xem lại
3. Bạn xem lại đề.
Lời giải:
1.
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
$AH=2S_{ABC}: BC = \frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm)
2. Đề sai. Bạn xem lại
3. Bạn xem lại đề.
Cho tam giác ABC vuông tại A có đường cao AH
a) chứng minh tam giác AHB đồng dạng với tam giác ABC
b) Cho BC = 10cm AB = 6cm Tính AC, HB
c) Phân giác của góc ABC cắt AH tại F và cắt cạnh AC tại E. Chứng minh
\(\frac{FA}{FH}=\frac{EC}{EA}\)
d) Đường thẳng qua C song song vs BE cắt AH tại K. CHứng minh: AF2 = FH x FK
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
Cho tam giác ABC vuông tại A có đường cao AH. Phân giác góc HAC cắt BC tại K, đường thẳng đi qua B và vuông góc với AK tại I, cắt AH và AC tại E và F.
1) Chứng minh 2 tam giác BEF và AEI đồng dạng với nhau
2) Chứng minh tứ giác AEKF là hình thoi
3) Cho AB=3cm, AC=4cm. Tính chu vi hình thoi AEKF
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A (AB > AC), kẻ AH vuông góc với BC (H thuộc BC), đường phân giác BE cắt AH tại F (E thuộc AC)
a) Chứng minh ΔHAC ∼ ΔABC
b) Cho biết AC = 3cm, BC = 5cm. Tính độ dài đoạn thẳng HB,AH
c) Chứng minh: \(\dfrac{FH}{FA}\)= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A có AB = 6cm; Ac = 8cm và đường cao AH.
a)Chứng minh: Tam giác HBA đồng dạng với tam giác ABC
b)Tia phân giác của góc ABC cắt AC tại D và cắt AH tại E. Tính độ dài các đoạn thẳng BC, AH, EH
c)Qua E vẽ đường thẳng song song với AC cắt BC, AB lần lượt tại F và K. Tính độ dài đoạn thẳng AK và diện tích tứ giác AEFD
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng.
2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Chứng minh tam giác HBA ~ tam giác ABC
b) Tính BC? ,AH?
c) Tia phân giác của góc C cắt AH tại E, AB tại D. Tia phân giác góc BAH cắt CD tại F, BH tại K. Chứng minh DK // AH rồi chứng minh tam giác AFE ~ tam giác CHE.
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Tia phân giác góc BAH cắt BC tại D. Trên tia HC lấy E/ HE=HA. Qua E vẽ đường thẳng vuong góc với BC cắt AC tại M. Chứng minh H,F,M thẳng hàng