Cho tam giác ABC vuông tại A (trong đó hai điểm B,C cố định còn điểm A thay đổi) có đường cao AH, trung tuyến AM. Trên cùng một nửa mặt phẳng bờ BC có chứa điểm A, vẽ hai tia Bx, Cy cùng vuông góc với BC. Qua A, kẻ đường thẳng vuông góc với AM, đường thẳng này cắt Bx, Cy lần lượt tại hai điểm D và E1. Chứng minh BD + CE= DE2. MD cắt AB tại I, ME cắt AC tại K. Chứng minh tứ giác AIMK là hình chữ nhật3. Gọi F là giao điểm của CD và AH. Chứng minh I,K,F thẳng hàng4. Tìm vị trí của điểm A để diện tích tứ giác BDEC nhỏ nhất
Cho ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2BM/AN =BN/CN và góc BNM = góc ANC . Gọi P là trung điểm AM,Q là giao điểm AN và CP.Chứng minh:
a,MN // CP
b, Tam giác AQC cân tại Q
c, Tam giác ABC vuông tại C
Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG
a) Tính các góc B, C cạnh AC và diện tích tam giác ABC
b) Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE
c) Tính diện tích tứ giác DEFG
Bài 6: Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
Bài 7: Cho ABC vuông ở A (AB < AC ), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh:
a. Tứ giác ABDM là hình thoi.
b. AM CD .
c. Gọi I là trung điểm của MC; chứng minh IN HN.
Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy D đối xứng với B qua O.
a) Chứng minh tứ giác ABMD là hình bình hành.
b) Chứng minh tứ giác AMCD là hình thoi.
c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang.
d) Chứng minh \(\widehat{NHK}\) = 90o
Cho tam giác ABC sao cho tồn tại các điểm M,N lần lượt trên 2 cạnh AB,BC sao cho 2\(\frac{BM}{AN}\)=\(\frac{BN}{CN}\)và\(\widehat{BNM}\)=\(\widehat{ANC}\).Gọi P là trung điểm AM,Q là giao điểm AN với CP.
a,Chứng minh MN // CP
b,Chứng minh tam giác AQC cân tại Q
c,Chứng minh tam giác ABC vuông tại C
Cho tam giác MNP. Điểm T nằm trong tam giác MNP sao cho các tam giác TMN, TMP, TPN có diện tích bằng nhau. Khi đó, T là giao điểm
(A) ba đường cao của tam giác đó
(B) ba đường trung trực của tam giác đó
(C) ba đường trung tuyến của tam giác đó
(D) ba đường phân giác trong của tam giác đó
Hãy lựa chọn phương án đúng ?