cho x,y là số thực không âm
Tìm Max P = \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Cho x, y, z thỏa mãn: x2 + y2 + z2 = 3. Tìm max, min P = xy + yz + 2xz
1.Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=m\left(m>0\right).\)
Tính \(m\)
2. Cho x,y,z thỏa mãn x^3=3x-1;y^3=3y-1;z^3=3z-1
Tính A=x^2+y^2+z^2
3. Cho a+b+c=0 thỏa mãn \(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\). Chứng minh
\(xa^2+yb^2=\left(x+y\right).c^2\)
cho 2x\(^{^2}\)+\(2y^2-xy=1\)
tìm max min của P=\(7\left(x^2+y^2\right)+4x^2y^2\)
_cho py ẩn x: \(x^2-5x+m-2=0\) (1) .tìm m để pt (1) có 2 nghiệp dương phân biệt \(x_1,x_2\) thỏa mãn hệ thức :
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
giải hệ pt : (1) x-y = -1
(2) \(\dfrac{2}{x}+\dfrac{3}{y}=2\)
Với x, y là những số thực dương thỏa mãn xy(x+y) = 2, tìm giá trị nhỏ nhất của biểu thức M = x3(x+1) + y3(y+1)
cho a,b,c>0 và a + b + c = 1
Tìm Min, Max B=\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
cho pt \(x^2-5x+2m-1=0\)
tìm m để \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{19}{3}\)