Đặt \(A=\sqrt{a+b+9c+6\sqrt{bc+ac}}+\sqrt{a+b+9c-6\sqrt{bc+ac}}\)
=\(\sqrt{\left(a+b\right)+2.3.\sqrt{c}\sqrt{a+b}+9c}+\sqrt{\left(a+b\right)-2.3.\sqrt{c}.\sqrt{a+b}+9c}\)
=\(\sqrt{\left(\sqrt{a+b}+3\sqrt{c}\right)^2}+\sqrt{\left(\sqrt{a+b}-3\sqrt{c}\right)^2}\)
=\(\sqrt{a+b}+3\sqrt{c}+\left|\sqrt{a+b}-3\sqrt{c}\right|\)(1)
TH1: \(\sqrt{a+b}< 3\sqrt{c}\) hay a+b<9c
Từ (1) <=>A= \(\sqrt{a+b}+3\sqrt{c}+3\sqrt{c}-\sqrt{a+b}=6\sqrt{c}\)
TH2: \(\sqrt{a+b}\ge3\sqrt{c}\) hay \(a+b\ge9c\)
Từ (1) <=> A= \(\sqrt{a+b}+3\sqrt{c}+\sqrt{a+b}-3\sqrt{c}=2\sqrt{a+b}\)