\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
rút gọn hộ mik vs
4)\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{8-2\sqrt{15}}\)
5)\(\sqrt{5+2\sqrt{6}}\) +\(\sqrt{8-2\sqrt{15}}\)
tính
a.\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
b. \(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)
\(\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}\)
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
2) \(\dfrac{\sqrt{108}}{\sqrt{3}}\)
13) \(\sqrt{8-2\sqrt{15}}\)- \(\sqrt{23-4\sqrt{15}}\)
14) ( 4+ \(\sqrt{15}\) ) (\(\sqrt{10}\)- \(\sqrt{6}\) ) \(\sqrt{4-\sqrt{15}}\)
\(B=\sqrt{\dfrac{8+\sqrt{15}}{2}}+\sqrt{\dfrac{8-\sqrt{15}}{2}}\)
1) Rút gọn
\(A=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
2) So sánh: \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)và \(\sqrt{3}\)
Rút gọn biểu thức:\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{8-2\sqrt[]{15}}-\sqrt{8+2\sqrt[]{15}}\)