\(\sqrt{5x^2-2x+1}=4x\)
ĐK: x \(\ge\) 0
<=> 5x2 - 2x + 1 = 16x2
<=> (x - 1)2 + 4x2 = 16x2
<=> (x - 1)2 = 12x2
<=>(x - 1)2 - 12x2 = 0
<=> (x - 1 - \(\sqrt{12}x\))(x - 1 + \(\sqrt{12}x\)) = 0
<=> (x - 1 - \(\sqrt{12}x\)) = 0 hoặc (x - 1 + \(\sqrt{12}x\)) = 0
1) x - 1 - \(\sqrt{12}x\) = 0 <=> x \(\approx\) -0,406 (loại)
2) x - 1 + \(\sqrt{12}x\) = 0 <=> x \(\approx\) 0,224
Vậy: x \(\approx\) 0,224