GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
\(3\sqrt[3]{7x-6}+2\sqrt{13-4x}=1\)
cho bất phương trình \(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}< 181-14x\)
với t \(=\sqrt{7x+7}+\sqrt{7x-6}\) (t \(\ge\)0 ), bất phương trình sẽ trở thành ?
GIải phương trình \(2\sqrt[3]{\left(3x-1\right)^2}+3\sqrt[3]{\left(4x-1\right)^2}=5\sqrt[3]{12x^2-7x+1}\)
giải hệ
1, \(\hept{\begin{cases}x^4+5y=6\\x^2y^2+5x=6\end{cases}}\)
2,tìm m để hệ có nghiệm
\(\hept{\begin{cases}x^3-12x-y^3+6y^2-16=0\\4x^2+2\sqrt{4-x^2}-5\sqrt{4y-y^2}+m=0\end{cases}}\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
Giải các pt sau bằng cách đặt ẩn phụ:
a/\(-4\sqrt{\left(4-x\right)\left(2+x\right)}=x^2-2x-12\)
b/\(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
c/\(\frac{\sqrt{x+4}+\sqrt{x-4}}{2}=x+\sqrt{x^2-16}-6\)
d/\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}=4-2x\)
e/\(\sqrt{x+7}+\sqrt{7x-6}+\sqrt{49x^2+7x-42}=181-14x\)
f/\(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
Giải bất phương trình
1) \(\sqrt{x^2-4x-12}+\sqrt{x^2-x-6}\ge x+2\)
2) \(|x^2-x+1|\le|3x-4-x^2|\)
\(2\sqrt{x^2-7x+10}=x+\sqrt{x^2-12x+20}\)