ĐK: \(x\ge\frac{3}{5}\)
\(\sqrt{25x^2-9}=2\sqrt{5x-3}\)
\(\Leftrightarrow\sqrt{5x-3}\cdot\sqrt{5x+3}-2\sqrt{5x-3}=0\)
\(\Leftrightarrow\sqrt{5x-3}\left(\sqrt{5x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{5x-3}=0\\\sqrt{5x+3}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=0\\5x+3=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{5}\left(chon\right)\\x=\frac{1}{5}\left(loai\right)\end{matrix}\right.\)
Vậy....