Lời giải:
$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$
$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$
Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$
$2023\equiv 1\pmod 3$
$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$
Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.
Do đó không tồn tại $x,y$ thỏa đề.
Lời giải:
$2020\equiv 1\pmod 3\Rightarrow 2020x^3\equiv x^3\pmod 3$
$2021\equiv -1\pmod 3\Rightarrow 2021x\equiv -x\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv x^3-x\pmod 3$
Mà $x^3-x=x(x^2-1)=x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x^3-x\equiv 0\pmod 3$
$\Rightarrow 2020x^3+2021x\equiv 0\pmod 3(*)$
Mặt khác:
$y^{2022}=(y^{1011})^2$ là scp nên $y^{2022}\equiv 0,1\pmod 3$
$2023\equiv 1\pmod 3$
$\Rightarrow y^{2022}+2023\equiv 1,2\pmod 3(**)$
Từ $(*); (**)\Rightarrow 2020x^3+2021x\neq y^{2022}+2023$ với mọi $x,y$ nguyên.
Do đó không tồn tại $x,y$ thỏa đề.
không cần áp dụng đồng dư cũng ra được mà chỉ cần tách ra rồi xét chia hết cho 3 là ra