So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
So Sánh : \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\) với \(1-\frac{1}{2^{2010}}\)
so sánh \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)với 1-\(\frac{1}{2^{2010}}\)
So sánh S =\(\frac{2}{1×2×3}+\frac{2}{2×3×4}+\frac{2}{3×4×5}+...+\frac{2}{2010×2011×2012}\) với P=\(\frac{1}{2}\)
So sánh : \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}với1\)
So sánh : \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}với1\)
So sánh : \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}với1\)
1. Chứng tỏ: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
2.So sánh: \(\frac{2010^{2011}+1}{2010^{2012}+1}và\frac{2010^{2010}+1}{2010^{2011}+1}\)
bài 1 :a) Tính M:\(\frac{\frac{7}{2012}+\frac{7}{9}-\frac{1}{4}}{\frac{5}{9}-\frac{3}{2012}-\frac{1}{2}}\)
b) So sánh A và B biết A =\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2010}\);;; B =\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{17}\)