Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Duy

So sánh:

A=\(\frac{10^{10}-1}{10^{11}-1}\)và B=\(\frac{10^9-1}{10^{10}-1}\)

DoThah Trong
2 tháng 4 2019 lúc 21:19

10A=1011-10/1011-1

       =1011-1-9/1011-1

      =1 -  9/1011-1

10B=1010-10/1010-1

      =1010-1-9/1010-1

      =1 -  9/1010-1

Vì 9/1011-1<9/1010-1 nên 1 -  9/1011-1>1 -  9/1010-1

hay 10A>10B

=>A>B(vì 10>0)

   

\(A=\frac{10^{10}-1}{10^{11}-1}\)

Nhân cả hai vế của A với 10 ta có

\(10A=\frac{10\times\left(10^{10}-1\right)}{10^{11}-1}\)

\(10A=\frac{10^{11}-10}{10^{11}-1}\)

\(10A=\frac{10^{11}-1+9}{10^{11}-1}\)

\(10A=\frac{10^{11}-1}{10^{11}-1}+\frac{9}{10^{11}-1}=1+\frac{9}{10^{11}-1}\left(1\right)\)

\(B=\frac{10^9-1}{10^{10}-1}\)

Nhân cả hai vế của B với 10 ta có 

\(10B=\frac{10\times\left(10^9-1\right)}{10^{10}-1}\)

\(10B=\frac{10^{10}-10}{10^{10}-1}\)

\(10B=\frac{10^{10}-1+9}{10^{10}-1}\)

\(10B=\frac{10^{10}-1}{10^{10}-1}+\frac{9}{10^{10}-1}=1+\frac{9}{10^{10}-1}\left(2\right)\)

\(Từ\left(1\right)và\left(2\right)\Rightarrow1+\frac{9}{10^{11}-1}< 1+\frac{9}{10^{10}-1}\)

                          \(\Rightarrow10A< 10B\)

                           Vậy A < B

Phan Nam Vũ
2 tháng 4 2019 lúc 21:30

ta có

\(10A=\frac{10^{11}-10}{10^{11}-1}=\frac{10^{11}-1+11}{10^{11}-1}=\frac{10^{11}-1}{10^{11}-1}+\frac{11}{10^{11}-1}\)

\(=1+\frac{11}{10^{11}-1}\)

\(10B=\frac{10^{10}-10}{10^{10}-1}=1+\frac{11}{10^{10}-1}\left(tươngtựA\right)\)

vì mẫu càng nhỏ thì phân số càng lớn nên

\(\frac{11}{10^{11}-1}< \frac{11}{10^{10}-1}\)

\(\Rightarrow10A< 10B\Rightarrow A< B\)

Vậy A<B


Các câu hỏi tương tự
Trần Văn Đạt
Xem chi tiết
Nguyễn Thế Anh
Xem chi tiết
Đỗ Ngọc Quỳnh Như
Xem chi tiết
Min SúGà
Xem chi tiết
Dương Thanh Phúc
Xem chi tiết
Ha Canh doan
Xem chi tiết
Trần Thị Phương Thảo
Xem chi tiết
Kirito
Xem chi tiết
Đỗ Thùy Dương
Xem chi tiết