Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
leggo

So sánh \(\frac{x-y}{x+y};\frac{x^2-y^2}{x^2+y^2}\) với x>y>0

Đinh Đức Hùng
19 tháng 7 2017 lúc 12:47

Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)

Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)  (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )

Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Vu THi Huyen
19 tháng 7 2017 lúc 13:08

\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)

\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)

\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)


Các câu hỏi tương tự
Nguyen Ngoc Linh
Xem chi tiết
Lam Vu Thien Phuc
Xem chi tiết
Lê Quỳnh Mai
Xem chi tiết
Bui Huyen
Xem chi tiết
Nguyễn Tất Đạt
Xem chi tiết
An Ann
Xem chi tiết
Lê Hoàng An
Xem chi tiết
Lê Thúy Ngà
Xem chi tiết
Nguyen tuan cuong
Xem chi tiết