bài 1:
a) D = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) E = \(\sqrt[3]{\sqrt{5}-2}+\sqrt[3]{\sqrt{5}+2}\)
c) F =\(\sqrt[3]{182+\sqrt{33125}}+\sqrt[3]{182-\sqrt{33125}}\)
bài 2:
a) C = \(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}\)
b) D = \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\frac{1}{2-\sqrt{3}}\)
c) E =\(\frac{3-x^2}{x+\sqrt{3}}\) với x\(\ne-\sqrt{3}\)
d) F = \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
e) G = \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}\) (có vô hạn dấu căn)
Trục căn thức ở mẫu và rút gọn
a, (\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\))(\(\sqrt{6} +11\))
b,(\(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\))
c,\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)- (\(\sqrt{2}+\sqrt{3}\))
d,(\(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\))(\(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\))
tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)
rút gọn biểu thức
a) \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{2\left(-5\right)^2}\)
b)\(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\frac{2}{\sqrt{3}-1}\)
c) \(\frac{\sqrt{8}-2}{\sqrt{2}-1}+\frac{2}{\sqrt{3}-1}-\frac{3}{\sqrt{3}}\)
trục căn thức và thực hiện phép tính:
Q= \(\left(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)
P= \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}\sqrt{3}\right)\)
M=\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
GIẢI CHI TIẾT GIÚP MÌNH NHA!!
1,Trục căn thức ở mẫu, rút gọn: ( với \(x\ge0;x\ne1\))
a,\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b,\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
2,Chứng minh các đẳng thức sau:
a,\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=1\)
b,\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c,\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}+\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=-1\)
d,\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Tính giá trị các biểu thức sau:
a) \(A=\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)
b) \(A=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
c) \(A=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
c) \(A=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
so sánh
\(\sqrt{1+\sqrt{2+\sqrt{3}}}\) với 2
\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+3\right)\)
\(0.1\cdot\sqrt{\left(-3\right)^2}\cdot\left[6\sqrt{\left(\frac{1}{3}\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\right]^2\)
\(\left(\frac{3\sqrt{2}+\sqrt{6}}{\sqrt{12}+2}-\frac{\sqrt{54}}{3}\right)\cdot\frac{2}{\sqrt{6}}\)
\(\left(\frac{3+2\sqrt{3}}{\sqrt{3}+2}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)\div\left(1\div\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
tính
\(\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\frac{3+6\sqrt{3}}{\sqrt{3}}-\frac{13}{\sqrt{3}+4}\)
\(3\sqrt{\frac{3}{2}}-\sqrt{6}+\sqrt{\frac{2}{3}}\)
\(\left[3-\sqrt{\left(\sqrt{3}-1\right)^2}\right]^2+\sqrt{147}\)
\(\frac{\sqrt{6}-\sqrt{3}}{\sqrt{2}-1}-\frac{\sqrt{10}-\sqrt{15}}{\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)