\(A=\frac{54.107-53}{53.107+54}=\frac{\left(53+1\right).107-53}{53.107+54}\)
\(=\frac{53.107+107-53}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{\left(134+1\right).269-133}{134.269+135}\)
\(=\frac{134.269+269-133}{134.269+135}=\frac{134.269+136}{134.269+135}\)
\(=\frac{134.269+135}{134.269+135}+\frac{1}{134.269+135}=1+\frac{1}{134.269+135}\)
Vì \(1+\frac{1}{134.269+135}>1\Rightarrow A< B\)
Vậy \(A< B\)