Lời giải:
$A=\frac{10(10^7-1)+9}{10^7-1}=10+\frac{9}{10^7-1}< 10+\frac{9}{10^6-1}=\frac{10^7-1}{10^6-1}=B$
Lời giải:
$A=\frac{10(10^7-1)+9}{10^7-1}=10+\frac{9}{10^7-1}< 10+\frac{9}{10^6-1}=\frac{10^7-1}{10^6-1}=B$
So sánh:
A = \(\frac{10^7+1}{10^8+1}\) và B = \(\frac{10^6+1}{10^7+1}\)
1. So Sánh: \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
so sánh Avà B :
a)A=\(\frac{n}{n+1}\);B=\(\frac{n+2}{n+3}\)
b)A=\(\frac{n}{2n+1}\);B=\(\frac{3n+1}{6n+3}\)
c)A=\(\frac{10^7+5}{10^7-8}\);B=\(\frac{10^8+6}{10^8-7}\)
d)A=\(\frac{10^{1992}+1}{10^{1991}+1}\);B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
so sánh A và B :
a) A = \(\frac{20}{39}+\frac{22}{27}+\frac{18}{43}\) ; B = \(\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b) A = \(\frac{3}{8^3}+\frac{7}{8^4}\) , B= \(\frac{7}{8^3}+\frac{3}{8^4}\)
c) A = \(\frac{10^7+5}{10^7-8}\) , B = \(\frac{10^8+6}{10^8-7}\)
d) A = \(\frac{10^{1992}+1}{10^{1991}+1}\), B = \(\frac{10^{1933}+1}{10^{1992}+1}\)
So sánh các phân số:
a) A=\(\frac{10^7+5}{10^7-8}\) và B=\(\frac{10^8+6}{10^8-7}\)
b)A=\(\frac{10^{1992}+1}{10^{1991}+1}\) và B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
B = \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)
a) So sánh A và B
b) Chứng minh A = \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\)
bài 1 So sánh
a)\(A=\frac{3}{8^3}+\frac{7}{8^4}\) ; \(B=\frac{7}{8^3}+\frac{3}{8^4}\)
b)\(A=\frac{10^{1992}+1}{10^{1991}+1};B=\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(A=\frac{10^7+5}{10^4-8};B=\frac{10^8+6}{10^8-7}\)
d)\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8};B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)
e)\(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
So sánh :
A = \(\frac{1+2+3+4+5+6}{7+8+9+10+11+12}\) ; B = \(\frac{1+2+3+4+5+6+7}{7+8+9+10+11+12+13}\)
GIẢI CHI TIẾT GIÚP MÌNH NHA!
So sánh các phân số:
\(a.\frac{18}{91}và\frac{23}{114}\)
\(b.\frac{21}{52}và\frac{213}{523}\)
\(c.\frac{1313}{9191}và\frac{1111}{7373}\)
\(d.A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
\(e.A=\frac{10^{1992}+1}{10^{1991}+1};B=\frac{10^{1993}+1}{10^{1992}+1}\)
\(f.\frac{n}{n+3}và\frac{n-1}{n+4}\)