Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa
Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\) \(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2018}+1+9}=\frac{10^{2018}+10}{10^{2018}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Rightarrow\)\(B>A\) hay \(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Có \(A=\frac{10^{2017}+1}{10^{2016}+1}\); \(B=\frac{10^{2018}+1}{10^{2017}+1}\)
Áp dụng công thức \(\frac{a}{b}>\frac{a+c}{b+c}\)( a;b;c \(\inℕ^∗\)):
\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2017}+1+9}=\frac{10^{2018}+10}{10^{2017}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Rightarrow B>A\)hay A < B
Vậy A < B