Ta có : \(A=2^0+2^1+2^2+2^3+...+2^{2010}\)
\(3A=2+2^2+2^3+2^4+...+2^{2011}\)
=> \(2A=3A-A=\left(2^1+2^2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
=>\(2A=2^{2011}-1\)
=>\(A=\frac{2^{2011}-1}{2}\)
=> A < B ( vì \(\frac{2^{2011}-1}{2}< 2^{2011}\) )