\(\left(5^2-1\right)A=12\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right).\) ... .\(\left(5^{128}+1\right)\)
=\(12\left(5^4-1\right)\)\(\left(5^4+1\right)\)\(\left(5^8+1\right)\). ... .(5128+1)
=\(12\left(5^8-1\right)\left(5^8+1\right)\). ... .\(\left(5^{128}+1\right)\)
=\(12\left(5^{64}-1\right)\left(5^{64}+1\right)\left(5^{128}+1\right)\)
=12.\(\left(5^{128}-1\right)\)\(\left(5^{128}+1\right)\)=12.(5256 - 1)
\(\Rightarrow\)A=\(\dfrac{12\left(5^{256}-1\right)}{5^2-1}\)=\(\dfrac{12\left(5^{256}-1\right)}{24}=\dfrac{5^{256}-1}{2}\)<B=5256-1
Vậy A<B.Chúc các bn học tốt