Đặt \(A=\frac{19^{10}+1}{19^{11}+1};B=\frac{19^{19}+1}{19^{20}+1}\)
\(19A=\frac{19^{11}+19}{19^{11}+1}=1+\frac{18}{19^{11}+1}\)
\(19B=\frac{19^{20}+19}{19^{20}+1}=\frac{19^{20}+1+18}{19^{20}+1}=1+\frac{18}{19^{20}+1}\)
Ta có: \(19^{11}+1<19^{20}+1\)
=>\(\frac{18}{19^{11}+1}>\frac{18}{19^{20}+1}\)
=>\(\frac{18}{19^{11}+1}+1>\frac{18}{19^{20}+1}+1\)
=>19A>19B
=>A>B