1/1.2+1/2.3+1/3.4+...+1/59.60
=1-1/2+1/2-1/3+1/3-1/4+...+1/59-1/60
=1-1/60
=59/60
vì 1>59/60
=> 1>1/1.2+1/2.3+1/3.4+...+1/59.60
chúc bạn học tốt nha
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{59.60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}=\frac{59}{60}\)
Đặt \(C=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{59\times60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}< 1\)
=> C < 1 (đpcm)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{59.60}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=1-\frac{1}{60}< 1\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{59\cdot60}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)
\(=\frac{1}{1}-\frac{1}{60}\)
\(=\frac{60}{60}-\frac{1}{60}\)
\(=\frac{59}{60}\)
Ta có : \(\frac{59}{60}< 1\)nên \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{59\cdot60}< 1\)