\(\Leftrightarrow\dfrac{1+cos2x}{2}-\sqrt{3}sin2x=1+\dfrac{1-cos2x}{2}\)
\(\Leftrightarrow cos2x\cdot\dfrac{1}{2}+\dfrac{1}{2}-\sqrt{3}\cdot sin2x=1+\dfrac{1}{2}-\dfrac{1}{2}cos2x\)
\(\Leftrightarrow cos2x\cdot\dfrac{1}{2}+\dfrac{1}{2}-\sqrt{3}\cdot sin2x-\dfrac{3}{2}+\dfrac{1}{2}cos2x=0\)
=>\(cos2x-\sqrt{3}\cdot sim2x=-\dfrac{1}{2}+\dfrac{3}{2}=1\)
=>\(sin2x\cdot\sqrt{3}-cos2x=-1\)
=>sin(2x-pi/6)=-1/2
=>2x-pi/6=-pi/6+k2pi hoặc 2x-pi/6=7/6pi+k2pi
=>x=kpi hoặc x=2/3pi+kpi