Giả sử tồn tại cặp số (a,b) thỏa \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=> \(\frac{b-a}{a.b}=\frac{1}{a-b}\) => (b-a)(a-b)=ab
=> -(a-b)(a-b) = ab
hay \(-\left(a-b\right)^2=ab\) (*)
Đẳng thức (*) không thể sảy ra vì vế trái luôn luôn âm và vế phải luôn luôn dương.
Vậy không tồn tại cặp số a,b dương nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)