\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}-1\right):\left(\dfrac{16-x+x-16-x+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\right)\)
\(=\dfrac{\sqrt{x}-\sqrt{x}-4}{\sqrt{x}+4}\cdot\dfrac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}{-x+1}\)
\(=\dfrac{-4\left(\sqrt{x}-1\right)}{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{4}{\sqrt{x}+1}\)