\(\frac{2^{13}\cdot3^7}{4^7\cdot9^3}=\frac{2^{13}\cdot3^7}{\left[2^2\right]^7\cdot\left[3^2\right]^3}=\frac{2^{13}\cdot3^7}{2^{14}\cdot3^6}=2^{-1}\cdot3=\frac{1}{2}\cdot3=\frac{3}{2}\)
\(\frac{2^{13}\cdot3^7}{4^7\cdot9^3}=\frac{2^{13}\cdot3^7}{\left[2^2\right]^7\cdot\left[3^2\right]^3}=\frac{2^{13}\cdot3^7}{2^{14}\cdot3^6}=2^{-1}\cdot3=\frac{1}{2}\cdot3=\frac{3}{2}\)
Rút gọn biểu thức
a) \(\frac{2^7.9^3}{6^5.8^2}\) b) \(\frac{6^3+3.6^2+3^3}{-13}\) c) \(\frac{5^4.20^4}{25^5.4^5}\)
3 tick nha mn
Rút gọn
a) \(\frac{2^{13}.3^7}{2^{15}.3^2.9}\)
b) \(\frac{4^{10}+8^4}{4^5+8^6}\)
Rút gọn\(A=-\frac{3^9+2^3\times3^7-2^{10}-3^2+2^{13}}{2^2\times3^7-3^{10}+2^{12}-2^{10}-3^{13}}\)
Bài 1: Rút gọn biểu thức:
a, \(\frac{2^7.9^3}{6^5.8^2}\)
Bài 2: Thực hiện phép tính:
a, \(\frac{1}{2}-\frac{1}{3}+\frac{1}{12}\)
b, \(\frac{9^9.27^4}{3^8.81^5}\)
Câu 1:Rút gọn các biểu thức:
A=\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}-\frac{5}{4}.\frac{13}{99}+\frac{5}{99}.\frac{1}{4}\)
Câu 2: So sánh:
A=\(\frac{2013}{2014}+\frac{2016}{2015}\)và \(\frac{2014}{2015}+\frac{2017}{2016}\)
Câu 3: Cho f(x)=ax2+bx+c. Biết 7a+b=0. Chứng minh rằng: f(10).f(-3)\(\ge\)0
8)Tính nhanh :
a) -3/7+5/13+ -4/7
b)-5/8+3/4+ -1/5+-3/8+1/4
c)6/7.8/13+6/7.9/13+ -3/13.6/7
d)-5/7.2/11+ -5/7.9/11+1 5/7
e)11 3/13 - (2 4/7+5 3/13)
f) (1-1/2)(1-1/3)(1-1/4)(1-1/5)
Rút gọn biểu thức B=\(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
Rút gọn biểu thức :
\(B=\frac{0,6-\frac{3}{11}+\frac{3}{13}}{1,4-\frac{7}{11}+\frac{7}{13}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
Rút gọn biểu thức: B= \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)