Cho a+b+c=0 (a khác 0, b khác 0, c khác 0). Rút gọn các biểu thức: \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
Rút gọn biểu thức :
A=(a^3+b^3+c^3-3abc)/(a^2+b^2+c^2-ab-bc-ca)
Rút gọn biểu thức: \(B=\left(ab+bc+ca\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-abc.\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\)
rút gọn biểu thức
A=\(\frac{\text{(a^2+b^2+c^2)(a+b+c)^2+\left(ab+bc+ca\right)^2}}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
cho a,b,c là số thực dương. Cmr: a/b^2+ bc+c^2 + b/c^2+ ca+a^2 + c/ a^2+ ab+ b^2 >= a/ b^2+ bc + c^2 + b/c^2+ca+a^2 + c/a^2+ab + b^2 >= a+b+c/ab+ bc + ca.
Cho các số a,b,c # 0 thỏa mãn hệ thức a+b+c=0
Rút gọn biểu thức p=\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2+b^2}\)
CMR: a= b= c . Nếu,
a, 2( a2 + b2 + c2 ) = ab + bc + ca
b,2 ( a2 + b2 + c2 ) - 2( ab + bc + ca ) = 0
c, ( a + b + c )2 = 3( ab + bc + ca )
Cho biểu thức P=(a+b+c)(a2+b2+c2-ab-bc-ca)
a)Rút gọn P.
b)Chứng minh rằng: Nếu a3+b3+c3=3ab thì a=b=c hoặc a+b+c=0
Cho a, b, c>0
Chứng minh rằng: (a+b+c)^2\(\ge\) 3(ab+bc+ca) và ((a+b+c)^2/ab+bc+ca)+(ab+bc+ca/(a+b+c)^2)\(\ge\) 10/3