Rút gọn biểu thức :
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right).\frac{x-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\) với \(x\ge0,x\ne9\)
Mình ra kết quả là : \(A=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
Mấy bạn giải giúp mình sửa lại nhé. Mình cảm ơn !
B1 Rút gọn
a)\(\sqrt{6+2\sqrt{5}}-\sqrt{29-12\sqrt{2}}\)
b)\(\frac{2}{x^2y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\left(x\ge0;y\ge0;x\ne y\right)\)
c)\(\frac{2}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\left(a>\frac{1}{2}\right)\)
B2 giải pt
\(\sqrt{3-x}+3\sqrt{12-4x}-5\sqrt{48-16x}=-39\)
HELP ME!!!!
Rút gọn: \(\dfrac{\sqrt{x}\left(16-\sqrt{x}\right)}{x-4}+\dfrac{3+2\sqrt{x}}{2-\sqrt{x}}-\dfrac{2-3\sqrt{x}}{\sqrt{x}+2}\) với \(x\ge0;x\ne4\)
RÚT GỌN
\(A=\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}.\)
GIÚP MÌNH VỚI !!! MÌNH CÁM ƠN!!
Bài 1: Rút gọn biểu thức dạng chữ:
1) \(A=\dfrac{2\sqrt{x}+13}{x+5\sqrt{x}+6}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{2\sqrt{x-1}}{\sqrt{x}+3}\) ( với \(x\ge0\))
2) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{3}+3}{x+9}\)( với x\(\ge0,\) x\(\ne9\))
Rút gọn
\(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
B1. Với \(x\ge0,x\ne4.Chobiểuthức\)
\(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{1}{2-\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(B=\dfrac{1}{x\sqrt{x}+27}\)
a, tính giá trị biểu thức khi B= 1/4
b, Rút gọn A
c, Tìm giá trị của x để A>1/2
d, Với C= B : A. Tìm GTLN C
Bài 1: Rút gọn biểu thức dạng chữ:
3) \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}.\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{x}+3}{x+9}\) với x\(\ge0\), x ≠9
4) \(P=\dfrac{x-2}{x+2\sqrt{x}}-\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\) với x ≥ 0
5) \(B=\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right).\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)với x > 0, x ≠ 1
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
Cho \(A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a. Rút gọn A
b. Tìm x để \(A>\dfrac{1}{3}\)