a, Ta có :\(\sqrt{x-\sqrt{x^2-1}}.\sqrt{x+\sqrt{x^2-1}}\)
= \(\sqrt{\left(x-\sqrt{x^2-1}\right).\left(x+\sqrt{x^2-1}\right)}\)
= \(\sqrt{x^2-\left(\sqrt{x^2-1}\right)^2}=\sqrt{x^2-|x^2-1|}\)
= \(\sqrt{x^2-\left(x^2-1\right)}=\sqrt{x^2-x^2+1}=\sqrt{1}=1\) ( TM )