\(A=\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\\ ĐKXĐ:x\ne3\\ A=\frac{x+3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}\\ =\frac{\sqrt{x+3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)