Giải các pt sau
a, \(\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin\left(x+\dfrac{\pi}{4}\right)\)
b, \(2sin\left(2x-\dfrac{\pi}{6}\right)+4sinx+1=0\)
c, \(cos2x+\sqrt{3}sinx+\sqrt{3}sin2x-cosx=2\)
d, \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+cos^2\left(x-\dfrac{3\pi}{4}\right)\)
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
tìm \(\alpha\) để pt có nghiệm
\(\frac{5+4sin\left(\frac{3\pi}{2}-x\right)}{sinx}=3sin2\alpha\)
cho pt: m \(\sin^2x\) - 3 \(\sin x.\cos x\) -m - 1 = 0.
Tìm m để pt có đúng 3 no thuộc (0; \(\frac{3\pi}{2}\))_
pt sinx+cos\(\left(2x+\dfrac{\pi}{3}\right)\)=0 có bao nhiêu nghiệm thỏa mãn \(0\le x\le2\pi\)
giải hệ pt :
\(\left\{{}\begin{matrix}x^3-y^3+2x^2+y^2+3=0\\x^2+2y^2+4x-4y+1=0\end{matrix}\right.\)
Giai pt lượng giác : \(4sin^4x+12cos^2x-7=0\) có nghiệm là :
A. \(x=\pm\frac{\Pi}{4}+k2\Pi\)
B. \(x=-\frac{\Pi}{4}+k\Pi\)
C. \(x=\frac{\Pi}{4}+k\Pi\)
D. \(x=\frac{\Pi}{4}+k\frac{\Pi}{2}\)
Câu1:Tìm nghiệm xϵ(-3π/2;4x) của pt:Sin(2x-π/4)=1
Câu2:Giải pt: Sin(x^2-4x)=0
Câu3:Giải pt: Cos(Sin x)=1
Giải phương trình:
a, \(sin^2x+\left(1-\sqrt{3}\right)sinxcosx-\sqrt{3}cos^2x=0\).
b, \(3sin^2x-4sin\left(2x\right)+5cos^2x=2\).