ĐKXĐ:
\(\left\{{}\begin{matrix}2-\sqrt{x}\\2+\sqrt{x}\\x-4\end{matrix}\right.\ne0\Leftrightarrow x\ne4\)
P=\(\dfrac{\left(2+\sqrt{x}\right)\left(2+\sqrt{x}\right)-\left(2-\sqrt{x}\right)\left(2-\sqrt{x}\right)+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{\left(4+4\sqrt{x}+x\right)-\left(4-4\sqrt{x}+x\right)+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)
P=\(\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ P=\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)
b) Th P>0
<=> \(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)>0<=>\(4\sqrt{x}\)>0 <=> x>0(x\(\ne\)4)
TH P < 0
<=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)<0 <=>\(4\sqrt{x}\)<0<=> \(\sqrt{x}< 0\)(vô lý)
c) |P|=1
=>P=1 hoặc P=-1
TH P=1
=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)=1 <=> \(4\sqrt{x}\)=\(2-\sqrt{x}\) <=> x=\(\dfrac{4}{25}\)
TH P= -1
=>\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}\)=-1<=> \(4\sqrt{x}\)=\(\sqrt{x}-2\)<=> \(\sqrt{x}=-\dfrac{2}{3}\)(vô lý)