Bài 2: Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Khánh Ly

phương trình \(cos^22x+cos2x-\frac{3}{4}=0\)có nghiệm là ??

Akai Haruma
19 tháng 7 2019 lúc 0:03

Lời giải:

\(\cos ^22x+\cos 2x-\frac{3}{4}=0\)

\(\Leftrightarrow 4\cos ^22x+4\cos 2x-3=0\)

\(\Leftrightarrow (2\cos 2x+1)^2-4=0\)

\(\Leftrightarrow (2\cos 2x-1)(2\cos 2x+3)=0\)

\(\Rightarrow \left[\begin{matrix} \cos 2x=\frac{1}{2}\\ \cos 2x=\frac{-3}{2}\end{matrix}\right.\)

Nếu \(\cos 2x=\frac{1}{2}=\cos (\frac{\pi}{3})\)

\(\Rightarrow 2x=\pm \frac{\pi}{3}+2k\pi \Rightarrow x=\pm \frac{\pi}{6}+k\pi \) với $k$ nguyên

Nếu \(\cos 2x=\frac{-3}{2}\leq -1\) (vô lý- loại)

Vậy........

Trang Vân
19 tháng 7 2019 lúc 8:57

cos2 2x +cos2x - \(\frac{3}{4}\) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}cos2x=\frac{1}{2}\left(N\right)\\cos2x=\frac{-3}{2}\left(L\right)\end{matrix}\right.\)

* cos2x=\(\frac{1}{2}\)

cos 2x=cos \(\frac{\pi}{3}\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)(k\(\in\)Z)


Các câu hỏi tương tự
Thương Thương
Xem chi tiết
Kuramajiva
Xem chi tiết
Gia Khanh
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bảo Ngọc Nguyễn
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết