Để pt có `2` nghiệm trái dấu khi:
\(P< 0\\ \Leftrightarrow\dfrac{m-5}{2}< 0\\ \Leftrightarrow m-5< 0\\ \Leftrightarrow m< 5\\ \Rightarrow C\)
Pt đã cho có 2 nghiệm trái dấu khi:
\(2\left(m-5\right)< 0\Rightarrow m< 5\)
Để pt có `2` nghiệm trái dấu khi:
\(P< 0\\ \Leftrightarrow\dfrac{m-5}{2}< 0\\ \Leftrightarrow m-5< 0\\ \Leftrightarrow m< 5\\ \Rightarrow C\)
Pt đã cho có 2 nghiệm trái dấu khi:
\(2\left(m-5\right)< 0\Rightarrow m< 5\)
Phương trình (m+1)x2+2x-1=0 có hai nghiệm trái dấu khi
A.m≥-1 B.m<-1 C.m≤-1 D.m>-1
Cho phương trình x2+(m+2)x+m=0.Giá trị của m để phương trình có hai nghiệm cùng dấu là
A.m=0 B.m>0 C.m<0 D.m≥0
Các giá trị của tham số m để phương trình 2x2+(m-1)x-m-1=0 có hai nghiệm phân biêt x1;x2 thỏa mãn x1≤1<x2 là
A.m>-1 B.m<-1 C.m>-3 D.m<-3
Phương trình x2-2(m+1)x-3=0 có hai nghiệm phân biệt là hai số đối nhau khi
A.m=1 B.m=0 C.m=2 D.m=-1
Đồ thị của hàm số y = 5x + 2m + 3 đi qua gốc tọa độ khi : A.m = 3 B.m = -1,5 C.m = 1,5 D.m = 5
Với giá trị nào của m thì phương trình x2-2x+3m-1=0 có hai nghiệm x1 và x2 thỏa mãn x12+x22=10
A.m=\(\dfrac{-4}{3}\) B.m=\(\dfrac{4}{3}\) C.m=\(\dfrac{-2}{3}\) D.m=\(\dfrac{2}{3}\)
Tìm m để phương trình x2 +3x + m – 5 = 0 có hai nghiệm trái dấu.
Cho phương trình x2-2(m+1)x+m2+3=0.Giá trị của m để phương trình có hai nghiệm thỏa mãn tích hai nghiệm không lớn hơn tổng hai nghiệm là
A.m>1 b.m<1 C.m<-1 m=1