a, x^2 + 7x + 6
= x^2 + x + 6x + 6
= x(x + 1) + 6(x + 1)
= (x + 6)(x + 1)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+6\right)\left(x+1\right)\)
\(a,x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
\(b,x^4+2008x^2+2007x+2008\)
\(=x^4-x+2008x^2+2008x+2008\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a/ \(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=\left(x^2+x\right)+\left(6x+6\right)\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b/ \(x^4+2008x^2+2007x+2008\)
\(=x^4+2008x^2+2008x-x+2008\)
\(=\left(x^4-x\right)+\left(2008x^2+2008x+2008\right)\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2008\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a,\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
b,\(x^4+2008x^2+2007x+2008\)
\(=x^4-x+2008x^2+2007x+x+2008\)
\(=x^4-x+2008x^2+2008x+2008\)
\(=x\left(x^3-1\right)+2008\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2008\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+6\right)\left(x+1\right)\)