xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y+z) + xz(x+z)+2xyz
Phân tích đa thức thành nhân tử xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
Phân tích đa thức thành nhân tử
a) 8x^3+4x^2-y^3-y^2
b) xy(x+y) +yz(y+z)+xz(x+z)+2xyz
Phân tích đa thức thành nhân tử
1) 4x^2-7x-2
2)4x^2+5x-6
3)5x^2-18x-8
4)xy(x+y)-yz(y+z)+xz(x-z)
5) xy(x+y)+yz+xz(x+z)+2xyz
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
Phân tích đa thức thành nhân tử:
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
Phân tích đa thức thành nhân tử :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
b) 2bx-3ay-bby+ax
c) 5ab-3bx+ax+5y
Phân tích thành nhân tử
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
Phân tích thành nhân tử xy(x+y)+yz(y+z)+xz(x+z)+2xyz