\(x^5+x+1\)
=\(x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\)
=\(x^5+x^4+x^3-\left(x^4+x^3+x^2\right)+x^2+x+1\)
=\(x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
=(\(\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
x5+x+1
=x5-x2+x2+x+1
=x2(x3-1)+(x2+x+1)
=x2(x-1)(x2+x+1)+(x2+x+1)
=(x2+x+1)(x3-x2+1)