\(=\left(x^2+y^2-5\right)^2-4\left(xy-2\right)^2=\left(x^2+y^2-5+2xy-4\right)\left(x^2+y^2-5-2xy+4\right)\)
\(=\left(\left(x+y\right)^2-9\right)\left(\left(x-y\right)^2-1\right)=\left(x+y-3\right)\left(x+y+3\right)\left(x-y+1\right)\left(x-y-1\right)\)
(x^2+y^2-5)^2 - 4x^2y^2 - 16xy -16
= (x^2 + y^2 - 5)^2 - (4x^2y^2 + 16xy + 16)
= (x^2 + y^2 - 5)^2 - (2xy + 4)^2
= (x^2 + y^2 - 5 - 2xy - 4)(x^2 + y^2 - 5 + 2xy + 4)
= [(x - y)^2 - 9][(x + y)^2 - 1]
=(x-y-3)(x-y+3)(x+y-1)(x+y+1)