Phân tích các đa thức sau thành nhân tử
a) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
b) \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
c) \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
d) \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
Phân tích đa thức sau thành nhân tử:
\(a,\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(b,c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
Phân tích đa thức sau thành nhân tử:
\(c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
1) Phân tích đa thức thành nhân tử:
\(\left(x+y\right)^3-x^3-y^3\)
2) Chứng minh rằng nếu:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) thì a=b=c
64. Phân tích đa thức thành nhân tử
a)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
Phân tích đa thức thành nhân tử:
1) \(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
2)\(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
3) \(\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
Phân tích đa thức thành nhân tử
a) \(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
b) \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
c) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
d) \(\left(x^2-8\right)^2+36\)
Phân tích đa thức thành nhân tử (mn giải chi tiết 1 xíu cho mk nhé)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)