a) b2 - 3 = \(\left(b-\sqrt{3}\right)\left(b+\sqrt{3}\right)\)
b) 8x - 2x3 + 8x2y - 8xy2 = 2x(4 - x2 + 4xy - 4y2)
= 2x[4 - (x - 2y)2]
= 2x(2 - x + 2y)(2 + x - 2y)
c) (x + 2)(x - 2)(x + 1)(x - 3) - 12 (*)
= (x2 - x - 6)(x2 - x - 2) - 12
Đặt x2 - x - 4 = t => (*) = (t - 2)(t + 2) - 12
= t2 - 16
= (t - 4)(t + 4)
= x(x2 - x - 8)(x - 1)
e) x2 - x - 6 = x2 - 3x + 2x - 6
= x(x - 3) + 2(x - 3)
= (x - 3)(x + 2)
f) 9x2 (x - 5) + 4(5 - x) = 9x2 (x - 5) - 4(x - 5)
= (x - 5)(9x2 - 4)
= (x - 5)(3x - 2)(3x + 2)
a) Biểu thức không phân tích thành nhân tử
b) $8x-2x^3+8x^2y-8xy^2$
$=2x(4-x^2+4xy-4y^2)=2x[4-(x^2-4xy+4y^2)]$
$=2x[2^2-(x-2y)^2]=2x(2-x+2y)(2+x-2y)$
c)
$(x+2)(x-2)(x+1)(x-3)-12$
$=[(x+2)(x-3)][(x-2)(x+1)]-12$
$=(x^2-x-6)(x^2-x-2)-12$
$=a(a+4)-12$ (đặt $x^2-x-6=a$)
$=a^2+4a-12=a^2+4a+4-16=(a+2)^2-4^2$
$=(a+2-4)(a+2+4)=(a-2)(a+6)=(x^2-x-6-2)(x^2-x-6+6)$
$=(x^2-x-8)(x^2-x)=x(x-1)(x^2-x-8)$
d)
$4ab-b^2+2a-3b$: không phân tích được thành nhân tử
e)
$x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)$
f)
$9x^2(x-5)+4(5-x)=9x^2(x-5)-4(x-5)$
$=(9x^2-4)(x-5)=[(3x)^2-2^2](x-5)$
$=(3x-2)(3x+2)(x-5)$