Những phương trình chính tắc của parabol là: b), d)
Những phương trình chính tắc của parabol là: b), d)
Những phương trình nào sau đây là phương trình chính tắc của hypebol ?
a) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\) b) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{9} = 1\) c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{64}} = 1\) d) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{9} = 1\)
Phương trình nào sau đây là phương trình chính tắc của elip?
\(a)\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{64}} = 1\)
b) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{64}} = 1\)
c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
d) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{64}} = 1\)
Viết phương trình các parabol sau đây dưới dạng chính tắc:
a) \(x = \frac{{{y^2}}}{4}\)
b) \(x-y^2=0\)
Viết phương trình hypebol sau đây dưới dạng chính tắc: \(4{x^2}-9{y^2} = {\rm{ }}1.\)
Tìm tọa độ tiêu điểm và viết phương trình đường chuẩn của đường parabol trong mỗi trường hợp sau:
a) \({y^2} = \frac{{5x}}{2}\)
b) \({y^2} = 2\sqrt 2 x\)
Cho elip \(\left( E \right)\) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1\) .Tìm tọa độ các giao điểm của \(\left( E \right)\) với trục Ox, Oy và tọa độ các tiêu điểm của \(\left( E \right)\).
Viết phương trình chính tắc của đường parabol, biết tiêu điểm \(F\left( {6;0} \right)\).
Một chiếc đèn có mặt cắt ngang là hình parabol (Hình 63). Hình parabol có chiều rộng giữa hai mép vành là AB = 40 cm và chiều sâu h = 30 cm (h bằng khoảng cách từ O đến AB). Bóng đèn nằm ở tiêu điểm S. Viết phương trình chính tắc của parabol đó.
Viết phương trình chính tắc của hypebol \(\left( H \right)\), biết \(N\left( {\sqrt {10} ;2} \right)\) nằm trên \(\left( H \right)\) và hoành độ một giao điểm của \(\left( H \right)\) với trục Ox bằng 3.