Ta có: \(mp\left( {ABKI} \right) \cap mp\left( {CDIK} \right) = IK\)
\(mp\left( {ABKI} \right) \cap mp\left( {ABCD} \right) = AB\)
\(mp\left( {CDIK} \right) \cap \left( {ABCD} \right) = CD\)
Mà IK // CD (Do CDIK là hình chữ nhật) suy ra AB // CD.
Ta có: \(mp\left( {ABKI} \right) \cap mp\left( {CDIK} \right) = IK\)
\(mp\left( {ABKI} \right) \cap mp\left( {ABCD} \right) = AB\)
\(mp\left( {CDIK} \right) \cap \left( {ABCD} \right) = CD\)
Mà IK // CD (Do CDIK là hình chữ nhật) suy ra AB // CD.
(Đố vui) Khi hai cánh cửa sổ hình chữ nhật được mở, dù ở vị trí nào, thì hai mép ngoài của chúng luôn song song với nhau (H.4.29). Hãy giải thích tại sao?
Nếu hai cánh cửa sổ có dạng hình thang như Hình 4.30 thì có vị trí nào của hai cánh cửa để hai mép ngoài của chúng song song với nhau hay không?
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (H.4.17)
a) Trong các đường thẳng AB, AC, CD, hai đường thẳng nào song song, hai đường thẳng nào cắt nhau?
b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh SA, SB. Trong các đường thẳng SA, MN, AB có hai đường thẳng nào chéo nhau hay không?
Cho hình chóp S.ABCD có đáy là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau, cặp đường thẳng nào song song, cặp đường thẳng nào chéo nhau?
a) AB và CD
b) AC và BD
c) SB và CD
Một chiếc gậy được đặt một đầu dựa vào tường và đầu kia trên mặt sàn (H.4.20). Hỏi có thể đặt chiếc gậy đó song song với một trong các mép tường hay không?
Quan sát lớp học và tìm hai đường thẳng song song với mép trên của bảng. Hai đường thẳng đó có song song với nhau hay không?
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng tứ giác MNCD là hình thang.
Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M và d.
a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?
b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC, CD và P là một điểm thuộc cạnh AC.
a) Xác định giao tuyến d của hai mặt phẳng (AMN) và (BPD)
b) Chứng minh rằng d song song với BD
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là trung điểm của đoạn thẳng SD (H.4.28)
a) Xác định giao tuyến của mặt phẳng (MAB) và (SCD).
b) Gọi N là giao điểm của đường thẳng SC và mặt phẳng (MAB). Chứng minh rằng MN là đường trung bình của tam giác SCD.