Mọi người giúp mình bài toán này với ạ. Cảm ơn nhiều
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O).Từ A kẻ hai tiếp tuyến AB, AC với đường tròn (O) (B và C là các tiếp điểm). Đường thẳng CO cắt đường tròn (O) tại điểm thứ hai là D; đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là E; đường thẳng BE cắt AO tại F; H là giao điểm của AO và BC.
a) Chứng minh: AE.AD = AH.AO = AB2 và chứng minh: tứ giác ODEH nội tiếp đường tròn.
b) Chứng minh: HE vuông góc với BF.
c) Chứng minh: \(\frac{HC^2}{AF^2-EF^2}-\frac{DE}{AE}=1\)