đặt \(A=2^{100}-2^{99}-2^{98}-....-2-1\)
\(=2^{100}-\left(2^{99}+2^{98}+....+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+.....+2+1\)
\(2B=2^{100}+2^{99}+...+2^2+2\)
\(B=2B-B=2^{100}-1\)
\(A-B=2^{100}-\left(2^{100}-1\right)=2^{100}-2^{100}+1=1\)
Vậy A = 1
\(2^{100}-2^{99}-2^{98}-....-2-1\)
đặt \(A=2^{100}-2^{99}-2^{98}-....-2-1\)
\(A=2^{100}-\left(2^{99}+2^{98}+.....+2+1\right)\)
đặt \(B=2^{99}+2^{98}+...+2+1\)
\(B=1+2+....+2^{98}+2^{99}\)
\(2B=2+2^2+.....+2^{99}+2^{100}\)
\(2B-B=2+2^2+....+2^{99}+2^{100}-\left(1+2+....+2^{98}+2^{99}\right)\)
\(B=2+2^2+....+2^{99}+2^{100}-1-2-....-2^{98}-2^{99}\)
\(B=2^{100}-1\)
ta có \(A=2^{100}-\left(2^{100}-1\right)\)
\(\Rightarrow A=2^{100}-2^{100}+1\)
\(\Rightarrow A=0+1\)
\(\Rightarrow A=1\)