Trong toán học, giai thừa là một toán tử một ngôi trên tập hợp các số tự nhiên. Cho n là một số tự nhiên dương, "n giai thừa", ký hiệu n! là tích của n số tự nhiên dương đầu tiên:
n! = n.(n-1).(n-2)....4.3.2.1
Đặc biệt, với n = 0, người ta quy ước 0! = 1. Ký hiệu n! được dùng lần đầu bởi Christian Kramp vào năm 1808.
Trong toán học, giai thừa là một toán tử một ngôi trên tập hợp các số tự nhiên. Cho n là một số tự nhiên dương, "n giai thừa", ký hiệu n! là tích của n số tự nhiên dương đầu tiên:
n! = 1x2x3x...x n
VD: 4! = 1.2.3.4 = 24
8! = 1.2.3.....7.8 = 40 320
Đặc biệt, với n = 0, người ta quy ước 0! = 1. Ký hiệu n! được dùng lần đầu bởi Christian Kramp vào năm1808.
Giai thừa phổ biến trong các phép toán tổ hợp - xác suất