=\(\sqrt{3}-\sqrt{2}+2\sqrt{2}-\sqrt{3}+1=\sqrt{2}+1\)
=\(\sqrt{3}-\sqrt{2}+2\sqrt{2}-\sqrt{3}+1=\sqrt{2}+1\)
RÚT GỌN
D=\(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
N=\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
C=\(\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{8-2\sqrt{15}}\right)\)
M=\(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
Gấp lắm . Giúp mình cảm ơn ạ
Bài 1
\(2\sqrt{\left(1+\sqrt{3}\right)^{ }3}-\sqrt{\left(2\sqrt{3}-3\right)^2}\)
\(\left(1+\sqrt{3}-\sqrt{5}\right).\left(1+\sqrt{3}+\sqrt{5}\right)\)
\(\left(\sqrt[]{\dfrac{8}{3}}-\sqrt{5}\right)x\sqrt{6}\)
\(\left(5+4\sqrt{2}\right).\left(3+2\sqrt{1}+\sqrt{2}\right).\left(3-2\sqrt{1}+2\right)\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Rút gọn
\(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}-2\sqrt{4\sqrt{7}}\)\(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)\(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\sqrt{6+\sqrt{35}}\)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}-1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)\(\sqrt{7-3\sqrt{5}}\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)\(\left(6\right)\dfrac{3\sqrt{x}}{5\sqrt{x}-1}\le-3\)
\(\left(7\right)\dfrac{8\sqrt{x}+8}{6\sqrt{x}+9}>\dfrac{8}{3}\)
\(\left(8\right)\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}< -4\)
\(\left(9\right)\dfrac{4\sqrt{x}+6}{5\sqrt{x}+7}\le-\dfrac{2}{3}\)
\(\left(10\right)\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}>-6\)
Bài 1: Tính
a) \(5\sqrt{8}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
b) \(1\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(1-\sqrt{6}\right)^2}\)
c) \(\dfrac{5\sqrt{3}-3\sqrt{5}}{\sqrt{5}-\sqrt{3}}+\dfrac{1}{4+\sqrt{15}}\)
d) \(\dfrac{2\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}-\sqrt{2}}-\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{12}+2}\)
Bài 2: Cho (d₁): y = \(\dfrac{1}{2}x-4\) và (d₂): y = \(-3x+3\) . Vẽ (d₁) và (d₂) trên cùng một hệ trục tọa độ. Tìm tọa độ giao điểm A của 2 đường thẳng trên.
Helpp!!
Bài 1: Rút gọn biểu thức
1) \(\sqrt{12}-\sqrt{27}+\sqrt{48}\) 2) \(\left(\sqrt{25}+\sqrt{20}-\sqrt{80}\right):\sqrt{5}\)
3) \(2\sqrt{27}-\sqrt{\frac{16}{3}}-\sqrt{48}-\sqrt{8\frac{1}{3}}\) 4) \(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{5}+\sqrt{3}}\)
5) \(\left(\sqrt{125}-\sqrt{12}-2\sqrt{5}\right)\left(3\sqrt{5}-\sqrt{3}+\sqrt{27}\right)\) 6) \(\left(3\sqrt{20}-\sqrt{125}-15\sqrt{\frac{1}{5}}\right).\sqrt{5}\)
7) \(\left(6\sqrt{128}-\frac{3}{5}\sqrt{50}+7\sqrt{8}\right):3\sqrt{2}\) 8) \(\left(2\sqrt{48}-\frac{3}{2}\sqrt{\frac{4}{3}}+\sqrt{27}\right).2\sqrt{3}\)
9) \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{8}-4\right)^2}\) 10) \(\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)
11) \(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\) 12) \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
13) \(\sqrt{15-6\sqrt{6}}\) 14) \(\sqrt{8-2\sqrt{15}}\) 15) \(\sqrt[3]{-2}.\sqrt[3]{32}+\sqrt{2}.\sqrt{32}\)
a)\(\left(\sqrt{3}-\sqrt{2}+1\right).\left(\sqrt{3}-1\right).\)
b)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
c)\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
d)\(\left(\sqrt{8}-5\sqrt{2}+\sqrt{20}\right).\sqrt{5}-\left(3.\sqrt{\frac{1}{10}}+10\right)\)
giúp mk zới:((
1. Tính ( rút gọn)
a)\(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
b)\(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
c)\(\sqrt{8+2\sqrt{15}}+\sqrt{\left(\sqrt{2-\sqrt{5}}\right)^2}\)
d)\(\sqrt{12+6\sqrt{3}}.\left(3+\sqrt{3}\right)\)
e) \(\left(2-\sqrt{5}\right).\sqrt{9+4\sqrt{5}}\)