\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=-m+3\)
a/ Để pt có 2 nghiệm pb
\(\Leftrightarrow\left\{{}\begin{matrix}m+1\ne0\\-m+3>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\m< 3\end{matrix}\right.\)
b/ Để nghiệm pt khác 0 (biểu thức xác định) \(\Rightarrow m\ne2\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m+1}\\x_1x_2=\frac{m-2}{m+1}\end{matrix}\right.\)
\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{7}{4}\)
\(\Leftrightarrow\frac{2\left(m-1\right)}{m-2}=\frac{7}{4}\Leftrightarrow8m-8=7m-14\)
\(\Rightarrow m=-6\)
c/ \(A=2\left(x_1+x_2\right)^2+2x_1^2x_2^2-4x_1x_2\)
\(=8\left(\frac{m-1}{m+1}\right)^2+2\left(\frac{m-2}{m+1}\right)^2-4\left(\frac{m-2}{m+1}\right)\)
\(=8-\frac{32}{m+1}+\frac{32}{\left(m+1\right)^2}+2-\frac{12}{m+1}+\frac{18}{\left(m+1\right)^2}-4+\frac{12}{m+1}\)
\(=\frac{50}{\left(m+1\right)^2}-\frac{32}{m+1}+6=50\left(\frac{1}{m+1}-\frac{8}{25}\right)^2+\frac{22}{25}\ge\frac{22}{25}\)
\(\Rightarrow A_{min}=\frac{22}{25}\) khi \(\frac{1}{m+1}=\frac{8}{25}\Rightarrow m+1=\frac{25}{8}\Rightarrow m=\frac{17}{8}\)