Phân tích đa thức thành nhân tử :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)
\(=x^3+3.x^2.y+3.x.y^2+y^3+z^3-x^3-y^3-z^3+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3.x^2.y+3.x.y^2+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
\(=3xy.\left(x+y\right)+3.\left(x+y\right)^2.z+3.\left(x+y\right).z^2\)
Cô ơi, em phải làm tiếp sao ạ ? cô ơi, cô giải chi tiết giúp em nhe cô, em cám ơn cô nhiều ạ, hihi ^^
phân tích đa thức thành nhân tử:
a.\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\right)\)
b.\(x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-z^2\right)+xyz\left(xyz-1\right)\)
Rút gọn
P=\(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
Rút gọn
P = \(\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
CMR \(\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
cmr:
\(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
1rút gọn\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)biết rằng x+y+z=0
2 rút gọn các phân thức
a,\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
b,\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
1.Cho x+y+z=0. CMR:
a) \(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
b) \(x^7+y^7+z^7=7xyz\left(x^2y^2+y^2z^2+z^2x^2\right)\)
c) \(10\left(x^7+y^7+z^7\right)=7\left(x^2+y^2+z^2\right)\left(x^5+y^5+z^5\right)\)
d) \(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
2. Tìm n∈ N để biểu thức sau là số nguyên tố
a) \(A=n^3-4n^2-4n-1\)
b) \(B=n^3-6n^2+9n-2\)
c) \(C=n^{1975}+n^{1973}+1\)
Chứng minh rằng: \(\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)