\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x-5\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+2x-5\right)=0\)
Giải các phương trình sau:
a \(\left(x+2\right)\left(x+\text{4}\right)\left(x+6\right)\left(x+8\right)+16=0\)
b \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
c \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=0\)
d \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
\(0=-\frac{\left(x+2\right)^2+12}{\left(x+2\right)^2}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2}-\frac{\left(x+3\right)^2+3}{\left(x+3\right)^2}+\frac{\left(x+4\right)^2+4}{\left(x+4\right)^2}\)
Mn giúp mình vs
1, \(x^3-6x^2+10x-4=0\)
2, \(x^3+2x^2+2\sqrt{2}x+2\sqrt{2}=0\)
3, \(x^4+x^2-\sqrt{2}x+2=0
\)
4, \(x^4+5x^3-12x^2+5x+1=0\)
5, \(\left(x+5\right)\left(2x+12\right)\left(2x+20\right)\left(x+12\right)=3x^2\)
6, \(\left(x^2-5x+1\right)\left(x^2-4\right)=6\left(x-1\right)^2\)
7, \(x^4-9x^3+16x^2+18x+4=0\)
Giải các phương trình sau:
a \(\left(X^2+2x\right)^2-3\left(x^2+2x\right)+2=0\)
b \(\left(x^2+x\right)\left(x^2+x+1\right)-6=0\)
c \(x^4-4x^3+x+3=0\)
d \(x^4-2x^3+x=2\)
a \(\left|x-1\right|+\left|y-2\right|=2\)
\(\left|x-1\right|+y=3\)
b \(\left|x+1\right|+\left|y-1\right|=5\)
\(\left|x+1\right|-4y+4=0\)
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
\(9\left(\dfrac{x-2}{x+1}\right)^3+\left(\dfrac{x+2}{x-1}\right)^2-10\left(\dfrac{x^2-4}{x^2-1}\right)=0\)
1)\(3x^3-13^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)}\)
2)\(2\left(x^2+x+1\right)^2-7\left(x-1\right)^2=13\left(x^3-1\right)\)
3)\(\left(x^2-16\right)\left(x-3\right)^2+9x^2=0\)
4)\(x\left(x^2+9\right)\left(x+9\right)=22\left(x-1\right)^2\)