\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\sqrt{a}\)
\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\sqrt{a}\)
\(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\) rút gọn biểu thức
giúp tui với
\(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)^2\sqrt{3+\sqrt{5}}\)
\(\dfrac{4-a^2}{48}\sqrt{\dfrac{36}{a^2-4a+4}}\left(a>2\right)\)
a)A=\(\dfrac{1}{2a-1}\sqrt{5a^2\left(1-4a+4a^2\right)}\) với a>\(\dfrac{1}{2}\)
b)A=\(\dfrac{\sqrt{x-2\sqrt{x-1}}}{\sqrt{x-1}-1}\)+\(\dfrac{\sqrt{x+2\sqrt{x-1}}}{\sqrt{x-1+1}}\) với x>2
c)\(\dfrac{a+b}{b^2}\)\(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) với a+b>0; b≠0
d)A=\(\left(\sqrt{\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
e)A=\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)}{\left(x-1\right)^4}}\) với x≠1; y≠1; y>o
f)A=\(\sqrt{\dfrac{m}{1-2x+x^2}}\)\(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0; x≠4
g)A=\(\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\)\(\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\) với x>0; x≠4
h)\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)\(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) với a≥0; a≠1
Cho A=\(\left(\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\dfrac{3}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\) với x > 0, x khác 4
a) Rút gọn A
b) Tính A với x = 6-2√5
Q = \(\left(1-\dfrac{\sqrt{a}-4a}{1-4a}\right)\) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\) với a > 0, a ≠ \(\dfrac{1}{4}\)
Rút gọn
Giúp em với ạ ! Em cảm ơn !
Cho A= \(\left[\dfrac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right]:\left(\dfrac{\sqrt{x}+2}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)với x > 0, x khác 4
a) Rút gọn A
b) Tính A với x = 6-2\(\sqrt{5}\)
Cho biểu thức
A =\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right).\dfrac{a-4}{\sqrt{4a}}\) với a ≥0,a≠4
a) Rút gọn biểu thức A
b) Tìm giá trị của a để A -2 < 0
c) Tìm giá trị của a nguyên để biểu thức \(\dfrac{4}{A+1}\)
Tìm điều kiện có nghĩa:
1) \(-\dfrac{1}{\sqrt{a+2}}\)
2) \(\sqrt{\dfrac{3}{\left(x-2\right)^2}}\)
3) \(\sqrt{\dfrac{-3}{a^2-4a+4}}\)
4) \(\sqrt{\dfrac{2}{x^2+2x+2}}\)
5) \(\sqrt{\dfrac{-3}{x^2-4x+5}}\)
6) \(\sqrt{\dfrac{-4}{x^2-1}}\)
7) \(\sqrt{\dfrac{x+1}{x-2}}\)
8) \(\sqrt{\dfrac{x-2}{x+3}}\)
\(\left(\dfrac{x+2\sqrt{x}-7}{x-9}+\dfrac{\sqrt{x}+1}{3-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-1}\right)\)
\(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}-1}{\sqrt{a}+2}+\dfrac{4\sqrt{a}-4}{4-a}\)
RÚT GONJ
\(M=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(N=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a+1}}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn :