\(\left(2-\sqrt{3}\right)^2=2^2-2\cdot2\cdot\sqrt{3}+3=7-4\sqrt{3}\)
\(\left(2\sqrt{2}-3\right)^2\)
\(=\left(2\sqrt{2}\right)^2-2\cdot2\sqrt{2}\cdot3+3^2\)
\(=8-12\sqrt{2}+9=17-12\sqrt{2}\)
\(\left(10-\sqrt{10}\right)^2=10^2-2\cdot10\cdot\sqrt{10}+\left(\sqrt{10}\right)^2\)
\(=100-20\sqrt{10}+10=110-20\sqrt{10}\)
\(\left(3-\sqrt{8}\right)^2=\left(3-2\sqrt{2}\right)^2\)
\(=3^2-2\cdot3\cdot2\sqrt{2}+\left(2\sqrt{2}\right)^2\)
\(=9-12\sqrt{2}+8=17-12\sqrt{2}\)